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Abstract—A mathematical model is proposed which describes transient heat and mass transfer within a
porous medium with bulk flow in an adjacent channel. This physical process is descriptive of regenerative
type mass exchangers in which a solute is removed from a fluid phase by sorption onto the internal surface
area of a porous material.

An integral formulation of the solution to the mathematical model in terms of the Green’s functions is
presented. Once the Green’s functions are determined the solution to the problem for any arbitrary inlet,
initial and boundary condition is readily obtained by evaluating integrals involving the Green’s functions
and the known conditions. The solution to the mathematical problem for the case in which generation of
heat and mass occurs within the porous material can also be written down immediately as an integral
involving the Green’s functions and the known functions describing the generation of heat and mass.

For the special case where resistance to heat and mass transfer between flowing phase in the channel and
external surface of the porous medium is negligible, the Green’s functions are determined in the Laplace
domain of the time variable. Using these Green's functions exact solutions are obtained for constant initial
conditions and step change inputs at the inlet. These solutions allow calculation of temperature and con-
centration profiles within the porous material itself. Such complete solutions to similar problems have
not previously been reported in the literature. These solutions are in the form of improper integrals, which
are best evaluated using a digital computer.

It was found that the breakthrough curves for the adiabatic mass exchanger actually exhibit two break-

throughs in contrast to the single breakthrough exhibited by the isothermal mass exchanger.

NOMENCLATURE Crij» functions defined by equation (76);
matrix of constants defined by equa- C, heat capacity of matrix [cal/g °K];
tion (47); Cop heat capacity of fluid phase [cal/g
crosssectional area of channel [cm?]; °K]; .
diagonal elements of — A ; C, concentration about which equili-
functions defined by equation (77); brium relationship is linearized [g/
matrix of constants defined by equa- cm?];
tion (44); Crijs functions defined by equation (75);
function defined by equation (79); D, molecular diffusivity [cm?/s];
function defined by equation (80); F, dimensionless generation terms of
concentration of diffusing species in mass and heat in equations (31) and
gas phase [g/cm’]; (32);
solute concentration in the channel  f, functions defined by equation (72);
[g/em®]; G, 4 x 4 array of Green’s functions;

* Presently with Shell Develgpment Co., Houston, Texas.
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where indicated, 2 x 2 submatrix of
Green’s functions;



818

9,

Le,

m;x,
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diffusion coefficient corrective factor
for porous medium which allows for
the fact that diffusion is not along a
straight path, dimensionless;
elements of the Green’s function
matrix;
matrix defined by equation (48);
heat transfer coefficient between
channel and porous material inter-
face [cal/s cm? K};
mass transfer coefficient between
channel and porous material inter-
face [cm/s];
Henry’s law type equilibrium con-
stant, dimensionless;
effective thermal conductivity of the
bulk porous medium,

k + [/l — €)] k,[cal/scm °K];
effective thermal conductivity,

(1 — &) ks + gk,[cal/s cm °K];
thermal conductivity of fluid phase
[cal/s cm °K];
thermal conductivity of non-fluid
phase [cal/s cm °K];
temperature coefficient of sorption
equilibrium,

or
PraT .. v

thickness of porous material in y,
direction [cm]; matrix differential
operator defined by equations (12)-
(15);

adjoint differential operator defined
by equations (17)~(20);
dimensionless parameter,

P Cpg 9 Defkey;
three dimensional array of 8§ com-
ponents whose real and imaginary
parts are defined by equations (89)-
(101);

Nusselt number, hgL/k,,, dimension-
less;

constant decoupling matrix defined
by equation (55);

active perimeter of channel [cm];

[g/em® °K];

Pe,

Q,

U,

U,,
U45
U3, Ug,

Vir,

J

V"l s

J

Peclet number, av/pegD, dimension-
less;
matrix of constants defined by equa-
tion (61);
heat of sorption [cal/g];
matrix of constants defined by equa-
tion (64);
the characteristic roots of the matrix
[—(1 — Ay) 4], defined by equa-
tions (53) and (54);
Laplace transform parameter;
Sherwood number, h,L/egD, di-
mensionless;
temperature [°K];
dimensionless time,

gDt,/[e + (1 — ) K] I2;
substitution for t — t;
time [s];
temperature of fluid phase in the
channel [°K];
dependent vector whose components
U,, U,, U,, U, represent dimension-
less concentration and temperature
within the porous material and in the
channel; dependent subvector U,,

U,;
dimensionless fluid phase solute con-
centration within the porous

material, C/Cy;

dimensionless temperature within
the porous material, 7/T;;
dimensionless solute concentration
in the channel, C,/C,;
dimensionless temperature in the
channel, T/ T, ;

constant dimensionless concentra-
tion and temperature at the inlet;
gas velocity through the channels
[cm/s];

functions defined by equation (84);
functions defined by equation (85);
dimensionless coordinate in direction
of flow, x,/LPe;

substitution for & — x;

coordinate in direction of gas flow
(zero at gas inlet) [cm];
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¥, dimensionless coordinate in the
direction of diffusion, y ,/L;
coordinate in the direction of diffu-
sion [cm];

complex quantity defined by equa-
tions (82) and (83);

branch of \/(Z,) defined by equation
(81).

Greek symbols
a, generalized Lewis number for the
porous medium,
e+ (1—-9eK k )
egD pr+ Kg’

r, equilibrium composition of solute on

sorbent, g solute/g sorbent;

dimensionless equilibrium relation-

ship such that

ppI" = constant + KC — K,T;

7, dimensionless parameter which is a
measure of the effect of concentra-
tion changes on temperature,

gK Co,
ppCp + Ktq TO,

1

o(x), Dirac delta function;

s Kronecker’s delta;

&, porosity of the matrix, vol. voids/
total vol, dimensionless; arbitrary
positive number used in limit ex-
pressions;

", dimensionless coordinate in the
direction of diffusion, same as y;

A, diagonal matrix whose diagonal is
—a; and —a,;

A, dimensionless parameter which is a
measure of the effect of temperature
changes on concentration,

1-9K, T
6+(l —‘E)K‘Co’

¢ dimensionless longitudinal coordin-
ate, same as x;

Pe density of fluid phase [g/cm3];
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Pp mass of sorbent per unit vol. of solid
phase [g/cm*];
1, dimensionless time, same as ¢;
Pr> function defined by equation (73);
o5 function defined by equation (74);
v, transformed matrix of Green’s func-
tions, PG.
INTRODUCTION

THis paper presents solutions to the system of
partial differential equations describing unsteady
state simultaneous heat and mass transfer in
porous media. These partial differential equa-
tions are descriptive of the physical process
occurring in adiabatic regenerator type mass
exchangers where a solute is sorbed from an
inactive carrier gas onto the internal surface
area of a porous material The essential feature
of the process regardless of the exact geometry
is that mass and heat transfer due to diffusion
and conduction occur in a region different from
the flowing fluid phase, where mass and heat
transport is due primarily to convection.

In designing regenerator type mass exchangers
one is usually interested in the so-called break-
through curves, that is, the time response of the
effluent stream solute concentration to the
input concentration. In 1952 Rosen [1] ob-
tained a solution for the isothermal case in
which a solute is sorbed internally within
spherical particles from a gas phase passing in
bulk flow through the bed of particles. By
assuming a linear equilibrium relationship
between solute in the fluid phase and sorbed
phase Rosen obtained an analytical solution for
the breakthrough curve as a real integral which
was then evaluated numerically. The essential
feature of Rosen’s model is that mass transfer
within the porous particle is described in terms
of a diffusion process. Rosen’s model also allows
for resistance between the bulk fluid phase
outside the particles and the particle external
surface by means of a constant mass transfer
coefficient. Previous to Rosen’s work resistance
to mass transfer within the particle had also
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been accounted for by means of an overall
mass transfer coefficient. This model of the
process gives rise to the well known Schumann-—
Anzelius solutions [2, 3] which have been
extensively tabulated by Larsen [4]. These
solutions are also well discussed in the book by
Jakob [5]. Masamune and Smith [6, 7] have
generalized Rosen’s solutions to include a third
resistance, the rate of sorption within the porous
particle. Using Green’s functions and matrix
representation Wernick [8] presented solutions
to this problem for arbitrary initial bed loading
and inlet conditions. Other systems of partial
differential equations handled by matrices and
Green’s functions are the electromagnetic equa-
tions described in Morse and Feshbach {9]
and the creeping flow equations of Oseen [10].

If the process of sorption from a fluid phase
within a porous material is viewed as adiabatic,
the heat of sorption will cause temperature
gradients within the porous materials. Since the
equilibrium relationship between solute in the
sorbed and fluid phase may depend strongly
upon temperature as well as concentration,
a coupling between the concentration and
temperature profiles is established. Coupled
problems in which resistance to mass and heat
transfer in the direction transverse to the flow
of the fluid phase is accounted for by means of
overall transfer coefficients have been treated
numericaily by Bullock [11] and Chi [12]
Mathematically this description of the process is
somewhat simpler than that in which the
mechanism of heat and mass transport in the
porous material is considered as a diffusional
process. With overalltransfercoefficientsa system
of four first order partial differential equations is
obtained. With diffusional transport in the
porous region, two second order and two first
order partial differential equations are obtained.

One of the earliest treatments of two coupled
linear diffusion equations appears to be that of
Henry [13]. The more recent monograph of
Luikov and Mikhailov [14] presents solutions
to linear systems of two coupled diffusion equa-
tions for boundary conditions of first, second and
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third kind. Norden and David [15] have pre-
sented finite difference solutions to nonlinear
systems of coupled diffusion equations arising in
their studies of the drying of wool. In none of the
work of these latter three groups were provisions
made to account for flow of a fluid phase at the
boundaries of the region in which the diffusional
transport is occurring. Thus, the physical system
considered in this paper is a combination of the
type of process considered by the authors in the
above paragraph and the type of process con-
sidered by Rosen [1].

The most general treatment of a problem
involving coupled heat and mass transport by
diffusion in a stationary region with convective
transport in an adjacent region is the strictly
numerical solution of Weber and Meyer [16]
which appeared while this study was in progress.
Since they solved the system of partial differential
equations by finite differences they were able to
handie nonlinear equilibrium relationships as
well as nonconstant physical properties. Un-
fortunately, their solution requires prohibitively
lengthy computer times. In order to keep the
computer time down to a reasonable value
rather large increment sizes were used; this can
give rise to appreciable error. As a result of this
Weber and Meyer did not explore the behavior
of this system. By assuming that physical
properties are constant and that the equilibrium
relationship can be linearized, a linear system
of four partia} differential equations is obtained
whose analytical solution is presented in this
paper. In the next section the problem is defined
mathematically and an integral representation
of the solution is presented in terms of the
Green’s function matrix and arbitrary but
known initial and inlet concentration and
temperature profiles. The advantage of pre-
senting the solution in this form is that once the
Green’s function matrix has been obtained the
solution can be obtained for any given inlet and
initial conditions in terms of integrals involving
these known conditions and the known Green’s
functions. The effect of arbitrary but known
generation terms of heat and mass may also be
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expressed as integrals involving these terms and
the Green’s function.

A special case of the solutions presented in
this paper has been given previously [17].
The solution in [17] is for the case when the
sorbing medium is semi-infinite in the direction
transverse to the direction of flow, or alter-
natively, when the values of time under con-
sideration are small Since in [17] also no
resistance to heatand mass transfer in the channel
was considered, solutions to step inputs in
concentration and temperature could be ex-
pressed as linear combinations of error functions.
For constant generation of heat and mass in a
fuel cell electrode, solutions were obtained as
repeated integrals of error functions. In the
present paper solutions are obtained which are
good for all values of time for sorbing media of
finite thickness, and a more general Green’s
function formulation is given.

MODEL AND ITS INTEGRAL REPRESENTATION

Consider equilibrium sorption and diffusion
of a dilute species, such as water vapor, and
diffusion of heat with generation in a porous
medium of finite thickness with bulk flow in an

% Porous medium

» (X or £ indimensionless form)
T

Channel

el L St oo il e

¥a ( Yor min dimensionless form)

FiG. 1. Coordinate system for diffusion of heat and massin a
porous medium with bulk flow in an adjacent channel.

adjacent channel as shown in Fig 1. According
to Henry’s classical analysis of diffusion of heat
and moisture in a textile fiber [13], its more
recent treatment from the point of view of
irreversible thermodynamics in Luikov and
Mikhailov’s book [14], and our previous
description of the model [17-19], the coupled
partial differential equations for diffusion and
rapid sorption in the matrix are

U, U, »U,
6t_'16t*6y2 =0 ()
oU, U, U,

B .

U, is the dimensionless concentration in the
porous matrix and U, is the dimensionless
temperature as defined in the Nomenclature.
The dimensionless groups 4 and y are measures
of the coupling between temperature and con-
centration. The group « involves a ratio of the
thermal diffusivity to molecular diffusivity. All
three groups depend upon the linearized equi-
librium relationship for the diffusing substance.

The partial differential equations for the
dimensionless concentration in the channel,
U, and for the temperature U, are

oU,

M + SWU, - U, y=0) =0 3)
U, Nu

_6;'*‘2’((]4“‘ U, y=0)—0- 4)

Constant Sherwood and Nusselt numbers have
been used to correct for any resistances to mass
and heat transfer in the thin channel. In a
previous publication we have shown the extent
of validity of such assumption for a simple
regenerator problem [20]. The group Le differs
from the usual Lewis number principally due
to the fact that the thermal conductivity involves
the conductivity of the matrix as well as of the
gas.

To completely determine the solution to
equations (1)}-(4) we must specify inlet, initial
and boundary conditions. The inlet conditions
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are that the functions U,{z, 0) and U (¢, 0) must
be given for t > 0. Initial conditions are that
U0, x, y) and U0, x, y) are given for x > 0,
0 <y < 1. Aty = 0 we have the boundary con-
ditions

ou,

R + ShU, - U = () (5
3y Iy=o s ' y:o)

d

U, + NuU, — U,| )=0. (6)
6y y=0 y=0

These equations result from the continuity
of heat and mass fluxes at the interface between
the porous media and the fluid phase in the
channel. A final boundary condition at y = 1
must be specified. We will assume that at y = 1
the porous material is impermeable to heat and
mass. This implies that the dimensionless con-
centration and temperature gradients (86U ,/0y)
and (0U,/dy) be zero at y = 1. In the more
general Green’s function formulation that follows
it is necessary to decide only whether the
boundary condition is of first, second or third
type. Thus we will specify the more general
boundary condition of second type, that is the
gradients (¢U,/dy) and (86U ,/dy) must be speci-
fied as functions of t and x at y = 1.

Using equations (5) and (6), equations (3)
and (4) can be rearranged into

S e = 0 7

0x v |y=0 @)
oUu, 1 au,

—_— = 0. 8

0x Le ¢y |- @

For the case where resistance to mass and heat
transfer is negligible between channel fluid
phase and porous material interface, ie. Nu
and Sh — oo, boundary conditions (5) and (6)
become

Ully:O = U, (9)

Us)yoo = Ul (10)

This case occurs when the channel is very thin
or when the diffusivities in the matrix are much
lower than those in the channel

C. A. CHASE, DIMITRI GIDASPOW and R. E. PECK

The adjoint equations and an integral representa-
tion
A completely non-homogeneous problem for
the set of partial differential equations given by
equations (1)~(4) is best solved by the method
of Green’s functions as are ail other linear
non-homogeneous boundary value problems.
To apply the method we must first obtain an
integral theorem giving the solution to the non-
homogeneous problem in terms of Green's
functions. To obtain such an integral representa-
tion, we form a divergence expression as
follows :

(LUY*G — UXLG) = a divergence (1

where U is the unknown vector, L the differential
operator matrix, G the Green’s function matrix,
* refers to the transpose of the matrix and ~
refers to the adjoint to be constructed. Specific-
ally let L be the operator such that L operating
on the column vector U with components
Uy, U,, Uy, Uy results in the column vector LU
whose four components are

U, &u au
L =k LT ST 2
(LU, 3 P i (12)
oU, 8U U
L R _M-l _‘J_ J— 2’
(LU a ta e W
oU
(LU)y; = —2 + SWU, — U,| ) (14)
Ox y=0
oU Nu |
L At S Vg _
(LU), A% + 1o Uy — U, y:ay (15)

Let Gy(i, j = 1,2,3,4) be the 4 x 4 array of
Green’s functions. For the present we will
consider each G;; as a six place function of the
three source coordinates (¢, x, y) and the three
observer coordinates (t, & n), that is,

Gy = Gyt &n5 6. X, Y)- (16)
We can now construct a matrix adjoint operator
L which when operating on the matrix of Green’s



HEAT AND MASS TRANSFER IN A REGENERATOR

functions G; yields thefollowing set of elements
of the adjoint system (LG);;

3Gy 0Gy Gy

(LG)y; = — o +Y~a;‘—”‘é}2_ (17
~ _ aGh an}‘ aszj
(LG),j =4 3 3 o e (18)
- 0G;;
(LG)y; = - —éﬁ + SWGs; ~ Gyl ) (19)
x y=0
- 0G,; Nu
(LG)4J == e 6;3 + 5(641 - GtLe Gzl y:O).
(20

The details of the construction are more fully
given in [18] The construction of the adjoint
system for the case when Nu and Sh are infinite
has been given in [17].

1
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and the homogeneous boundary conditions

G. .
0y ly=o y=0
G, ( 1 )
—_G,. — G, = 24
dy y=o+Nu aLeG‘” S 0 4
3Gy
4 =0,i=12;j= 1234 25
3 byer j (25)

Initial and inlet conditions which the G
must satisfy are given by

Gll = Gl2 = 621 = Gzz = OWhen(T - t) =0
and (¢, ) # (x, ) (26)

G3y =Gy, =Gyy =Gy =0whené — x =0,
n=0andt—-t>0 27
Gi3=G;3=G,4, =G, =0when ¢ — x =0,
y=0andt—-t>0 (28)
Gi3=G3, =Gy3 =G =0when{ — x =0,
T—t>0. (29)

An integral representation of the vector of
solution functions Uj(z, & ), j = 1,2,3,4, cannow
be written as

¢
L{;‘(T: éa ’?) = j\i {[Glj(‘t! é’ n; 0, X, y) - yGZj(t9 é’ W;Oy X, ,V)] U1(09 X, y) + [sz(T’ é’ 11,0, X, Y)
0

k4

- A'Glj(ts é) s 0’ X, y)] U2(0’ X, y)} dx dy + j. [G3)-('l', 69 n; L 0) U3 (t> 0)

[¢]
Te

+ G4j('£', éa '?, ta 0) U4(t’ 0)} dt + S\j. [Glj(t3 éa ??i z, X, 1)

00

Using the Dirac delta function notation and
summarizing the construction in [18], one
obtains that the G;; must satisfy

(i‘G)ij = d;;0(t — ) 8(¢ — x) 8(n — ),

i=12; j=1234 21)
(iG)ij = §;0(t — ) 8(¢ — x),,
i=34; j=1234 (22)

oU,(t, x, 1)

6}7 + aGZj(T9 ‘:) nLXx, 1)

x w]dx at.  (30)
oy

For the non-homogeneous case, where

(LU = F{t, x, ), i = 1,2;(LU); = F{t, %),
i=34 31)

we add the following terms to the right hand side
of equation (30)
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M

&1
_(‘;(_g Fi(ta X, .V) Gij(Tv év ”9t’ X, y)ddedt

Oty

-+

Oty

Y, Fit, x) Gifr, & n5 6, x)dx dr.

i=3

(32)

[ IS

Physical interpretation

Each element G;; of the Green’s function
matrix has an interesting physical interpretation.
For example, G, (. & 7; Lo, X, Vo) 15 the dimen-
sionless concentration at time 7 and the point
(&,1) due to an instantaneous unit source of
mass released at time t, at the point (xq, yo)
Similarly G,,(z, &,4; to, Xo, Vo) is the dimension-
less temperature at time t and the point (&, #)
due to an instantaneous unit source of mass
released at time ¢, at the point (xq, o). In a like
fashion we can give a physical interpretation
for the remaining elements of the Green’s
function matrix.

Notice that the elements in the third and
fourth rows (i = 3 or 4) of the Green’s function
matrix have no functional dependence upon y
and that elements in the third and fourth
columns (j = 3 or 4) have no functional depend-
ence upon 7.

INFINITE NUSSELT AND SHERWOOD NUMBERS

In some physical applications the resistance
to mass and heat transfer between flowing fluid
phase in the channel and the interface of the
porous media is negligible. This will be the case
for turbulent flow or for flow through systems
where the tortuosity of the path of flow causes
considerable mixing. It will also occur when the
diffusivity in the matrix is much lower than in
the channel, as in molecular sieves, or when the
channel is very thin. By neglecting this resistance
mathematical simplification is obtained.

If we allow the parameters Nu and Sk to
approach infinity, the system of equations to be
solved is (1), (2), (7) and (8) with boundary con-
ditions (9) and (10). The remaining boundary,
initial, and inlet conditions remain unchanged.

The integral representation, equation (30)
still holds; however, in the adjoint system of
equations for the Green’s functions equations
(19), (20) are replaced by

3Gy, 4Gy,
(LG)3; = — FN P (33)
R 8G,, G
L P i 2j
( G)4j 5X 6\/ =0 (34)

and boundary conditions given by equations
(23) and (24) become

Gy = Gley:o
G4j = aLe szty:().

(35)
(36)

Using (35) and (36) we can eliminate G5; and
G,; from (33) and (34). From boundary con-
ditions (9) and (10) we see that we need only to
have a solution for U,(t, x,y) and U,(t, x, y).
Therefore for the remainder of this section we
shall restrict j to taking on only the values 1 and
2.

In other words we need only solve for the
submatrix

Anticipating in advance that t and t and ¢
and x will enter the Green’s functions as
1 — t and & — x, make the change of variables
t=t—tandx' =& —x

The adjoint system of equations and boundary
conditions become

GGU anj 62G1j ’ G
A =0y, on —
atr Y atr 0y2 115(t)5(x) (7” y)

(37)
86y 96y, PGy

ot a Yoy
= §,;0(t) &(x) o — y) (38)

3Gy,
y=0 Oy

0G
ox'

=0 (39)

y=0
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X' |,_o Le 8y ly=0
G,;=G,;=0whent =0,x' >0 (41)
0Gy; =6G2j —0. 42)
0y ly=1 y ly=1

Equations (37) and (38) can be written in matrix
form as:

1—y|| o | |1 Off &
—A 1 5G2j 0 a 62sz

ot oy*
Oy
= d(t) 8(x) 8(n — y) [ 5“] 43)
2j
where for convenience we have dropped the
primes on t and x. Define the following matrices :

|1 -

STET
[Gn GIZJ

Gtxn=|g .| 9

Multiplying equation (43) by B™! gives the
matrix equations:

G G
el = 4
a T4 ay* H Rl
where
1 -1 —ya
A—l—ly[——l -—or] “)
_&:)&x)am—y)[l v]
H= 11—y ;1) W
From their definitions
iy = ! . 49)

£ p,C,
[1 tac s)K](l + qK,)

From the second law of thermodynamics it
can be shown that K and ¢gK, are positive quanti-
ties. Therefore, equation (49) shows that 0 < Ay
<1 or equivalently 1 — 1y > 0. Thus the
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problem of division by zero is avoided in
equations (47) and (48).

Let P be a non-singular matrix such that
PAP~! = A, where A is a diagonal matrix (for
the present we are assuming that such a P exists).
Premultiplying equation (46) by P and sub-
stituting PA = AP we obtain:

oG 0*G
P»(;}?+APEy—2——PH (50)
let
¥ = PG. (51)

Since the elements of P are constants they can
be brought inside the differential operators
/0t and 9%/8y® so that we obtain:
oy o’y
— 4+ A—— = PH.
at oy*

The characteristic roots of [ —(1 — Ay) A] are
ro=3{+ o)+ e = 1)* + dady]} (53)
ry =3[0 + &) — J[l@ = 1)* + dady]}. (54)

Following Henry [13] we could name the
above roots a concentration root and a tempera-
ture root. When the coupling is weak so that A
and y are small or « is extremely large one of the
above roots approaches a, the coefficient of the
Laplacian operator in the dimensionless temp-
erature equation, and the other root approaches
unity, the coefficient in the dimensionless con-
centration equation. However, as Henry said,
C when coupling exists all roots are con-
cerned with both diffusion processes to a greater
or lesser extent.”

The dimensionless groups o, and Ay are all
positive numbers. Hence (« — 1)? + 4ady > 0,
and the characteristic roots of A4 are distinct.
This is sufficient condition that a non-singular
matrix P exist such that PAP~! = A, a diagonal
matrix. The matrices P, P~ !, and A are found to

be:
[—-/1 l—rl}
P=1_711-+,

(52)

(539)
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B ~1 L—r, —(1-r)
p-1_ 1 2 1)
— 0
1 -y
A= (57)
—F
0 SR
1~ Ay
Define
oo
a= 1= 12 (58)

An alternate expression for r; is

ry=3{1+ o)~ J[la+ 1)~ 4ol ~ in)]}
(59)

from which we see that r, is always positive.
Therefore, the a; defined in equation (58) are
positive quantities. Using subscript notation we
can now write equation (52) as

at — 4 ayg - 5(9 5(.7() é(" - ,V) Qij’ Ly = 1» 2
(60)
where

1=y —r,
1 — Ay —~r,
—Aay 1 —ay
= . 1
[—laz az] 61)
Equations (39) and {40} can be rearranged
into the following matrix equation

3G *[1 o}gg
yze— 0 Le}édx

i —Ary
e=1"% [wz

(62)

5}‘ ¥y=0
Using the substitution G = P~ ¥ we obtain
v ik 4
1 —rE (63)
0y ly=o 0x ly=0

where the matrix R is defined as

0 L
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In subscript notation we have as the partial
differential equations and boundary conditions
that ¥;; must satisfy:

0¥ i 47
- ai“g};‘f‘ = 8(1) d(x) d(n — ¥) Q;; (65)

0w, Z ov,
Ralall ¥ - R. Zr ki -
&l w Gl =0 0
k=1
oY
—H =0, (68)
6}} y=1

We solve the above system by means of a
double Laplace transform with respect to ¢ and
x. Inversion of the transform with respect to the
transformed x-variable can be accomplished
analytically. Inversion with respect to the trans-
formed ¢ variable, however, must be done by
means of the inversion theorem and contour
integration in the complex plane. The solution
vector U is then obtained by substituting G and
the appropriate initial, inlet and boundary
conditions into equation (30} and performing
the indicated integration. For constant initial
and inlet conditions a somewhat simpler
approach can be taken. Since the system of
partial differential equations, equations (1)}-(4),
is linear we can choose the dimensionless
temperature and concentration so that the
initial conditions are zero. For zero flux at
y =1 we can write the solution for constant
inlet conditions of U$ and U as

Ufr, &) = U?,(g Gafr — t, & dt
+ US| Gufr —t. &, mde. (69)
4]

In the above the functional dependence on the
four variables, 7, , £ and x has been indicated

R:P[i (}}P_lz‘ 1 [~(1—r2}+Le(I~ri){I~r1}{i~Le)
e

ry—7r;

{1 —r)(Le — 1)

(=)~ Lel — m}‘ 4
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in terms of only two new variables, T — t and
¢ — x. Applying the convolution theorem, the
Laplace transform U ; with respect to time is

— 1~ 1
Ufs, &n) = U3 ~Gafs, &) + Uy. S Cafls, &)
2
1~
= Ug Z P1_k1 ; ij(sa 63 0; ’1)
k=1
0 -1 1% .
+ U4aLe sz E Tkj(s, é’ 09 ’1) . (70)

k=1

In the above, each ¥;; is considered as a four
place function ¥;{r —t, £ — x, y; n). Thus we
see that we need only the Laplace inverse of
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The symbol R;! denotes the inverse of the
matrix R;,.

In the above expression it should be noticed
that the symbol i when used as a subscript is
only an index; otherwise it denotes the imagin-
ary unit ./(—1). The value of the integral in the
above expression is given by the following
expressions.

a

1 .
;[ Re[e™ fi(iy)] dy

r 1 u
f u [C“f“"* (m’ ">

lim
=0

™

2
T

1/sP.(s, £ 0;n). It is this function which we u
actually invert by means of the inversion + Crijor (W, n>j'du (72)
J
_ coshnucos(2 —n)u + cosnucosh(2 — n)u
Prli 1) = cosh 2u + cos 2u (73)
_ sinhnusin(2 — #) u + sin qusinh(2 — n)u
il n) = cosh 2u + cos 2u (74)
2
CRij = Z CA" [Re mijk COS ﬁk -— Im mijk Sin ﬂk] (75)
2
Crj= kZ e [Remy sin B, + Imm cos ] (76)
=1
u
A R, B R,,B 4 u(ReZ ImZ 77
k —. 2R l: 11 <\/(a2)> 22 (\/( 1)) ( 2 2)] ( )
x u
Bi==+=|—R — Ry,B, [ —— )+ w(ReZ, + ImZ 78
k 2|R| 11 2 \/( 2) 22472 \/(al) ( 2 2) ( )

theorem. The details of this inversion are in
[18]. We obtain the result as a real valued
improper integral, where Re denotes the real
part of a complex quantity.

2
g g E 1 __
L 1{; Ti]'(s’x’O;n)}= {ERzrl
1

(71)

-0 l'

+ lim— j Re [¢ £,(iy)] dy} 2

In equations (77) and (78) the plus sign is chosen
when k = 1, and the minus sign when k = 2,
|R] is the determinant of the matrix R and is
identically equal to the parameter Le.

_ u(sinh 2u — sin 2u)
Biw) = cosh 2u + cos 2u (79)
sinh 2u + sin 2
Byfu) = X 4 (s0)

cosh 2u + cos 2u
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Z, is that branch of \/(Z,) such that R Ry, ReZ2 ! RuRzz) v
emnx‘"q{RF - 21R 2R
i T /
—§<arg22<;. (81) ,
“ Rzz Vm} Im{g I( _ guRzz) Vyr
Z, is a complex quantity whose real and 2 ’R' zz | 2|R|
imaginary parts are given by R3, v J (89)
ir
ReZ, = R},\(Vix — V3D + Ri(Vie — Vi) 2R
+ 2R R, — Ley(VigVar — VitVay) (82) Rem,,, = W Rem, ., (90)
ImZ, = 2R} VorVay + 2R3,V rVir
+ 2R Ry, — Le)(VigVar + ViiVar) (83) Rem,,, = — Ry, n Ry, - [ReZy(R,, Vyp
u 2|R| 2|R| Z3
1 Sinh ‘\/(aj) 2 + R22V1R) + ImZE(R11V21 + R22 Vl[)} (91)
Vir = 2J =1,
; 2 2 R
\/(a’)cosh ! cos L Remyy, = — 75> ~ Remyy, (92)
J@) " ) |R|
(84) R,,
) = —= . Re my, 93
o Rem,y R,, €My, (93)
8in ——
1 a;) R
Vii = Ve, j=12 Re my,, = =21 Rem,,, 94)
Via) Ry,
cos cos

V@) ey R, ReZz K R“R”)Vm

(85) Remyyy =

ZIR[ 2|R]
1Z,| = J[Re Z\ + ImZ,)*]  (86) R%, Im,52 Ry,R,,
G R A 2|R] Vi
ReZ, = J[HZ, + Re Z,)] 87) 2[R| 3 2
; R
Imz, = i\/[zl{Zl — Re Z))]. (88) ~3 I;QA! Vz,] 95)
The sign in (88) is plus if Im Z, > 0 and minus R
if ImZy <0. Rem,,, = ﬁ — Remy,, (96)
ReZ, Ry R, R2, mZ, [, R,1R22> .
Immy = —Immy, =_Z§[<1 —Tm""' Var — 2|R|V“ *Z% ZlRl 2R
- E%fﬁ_ 1% 97)
2 1R] iR
R
Im myy = —Immy,, = 2|R|1Z22 [ReZy(R1Var + Ry Vip) — ImZy(Ry Vg + Ry, Vip)] (98)
Immy,, = X2 iy, (99)
RIZ
= R = - (100)
Imm;,, —’RT”Immxzz = — Immy,,

12
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ReZ, R(iR;, R%, ImZ, RuRzz)
MMy = — IMMans = —=2| (1 — V., - =L py |- 1 — %
Immaay Immg, V4; [( 2|R| u 2|R| 21 z? 2|R, 1R
%1
R Vow l. 101
2|R' 2R:| (101

A computer program has been written to
evaluate the four integrals defined by equations
(72)(101). The program, a listing of which is
given in [18], also computes the value of the

four functions | Gi{t — ¢, &;n)dt, i = 3,4;j =
0

1, 2 at the specified values of 7, & and 5. The
solution vector Uz, &, 1), j = 1, 2, is also com-
puted for the specified constant inlet conditions
U9 and U3

Verification of the solution

That the solution given by equations (69)-
(101) satisfied the partial differential equations
(1) and (2) and the boundary condition

o,

oy

can readily be shown by substituting the solution
into these equations. The inlet conditions can
be shown to be satisfied identically by setting
¢ = n =0 and performing the indicated inte-
gration. Analytical verification of the equations
Ox 0 dy

=0

y=1

(102)

y=0 y=0

Le
was not obtained because of the algebraic com-
plexity of the resulting expressions. Numerical
verification of (102) was obtained, however, by
using the solution to calculate numerical values
for the individual terms. Similarly, numerical
verification of the zero initial conditions was
obtained by setting t =0 in the computer
program input.

It should be noticed that if Le = 1, the matrix
R reduces to the identity matrix, and equations
(65) and (66) are uncoupled. Setting Le = 1
yielded numerical results from the computer

program which checked results obtained pre-
viously for the decoupled problem [18].

Therefore, in view of these numerical and
analytical verifications, it is felt that the solution
and computer program are correct.

Computer time required

Using an IBM 360/40 the time required to
calculate results at each desired point (t, & )
averages about 6-7 s for longitudinal co-
ordinate & > 2. For smaller values of & con-
vergence of the integrals in equation (72) is
slower, requiring in some extreme cases as much
as one min of computer execution time. Thus,
even for the lengthy cases, it is felt that the
solution presented here offers considerable
computational advantages over the strictly
finite difference approach, both in time required
and in accuracy. Using the solution presented
here, one is able to calculate results for thosz
particular (t, & n) points desired rather than
march out the entire solution up to the desired
point as is necessary with the finite difference
approach. This can result in considerable
savings of computer time.

Application to drying

Using dimensions representative of actual
drying equipment, breakthrough curves and
transverse concentration and temperature pro-
files were calculated for the drying of moist air
with silica gel. Saturated air at 25°C is assumed
to enter 3 in. long cylindrical channels of 0:3 cm
effective dia. at a bulk velocity of 1 ft/s. The
internal walls of the channel are assumed to be
coated with porous silica gel 005 cm thick.

From Lee and Cummings [21] we can
approximate the silica gel-water equilibrium
relationship by
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002644 CT
= 5T (103)

where I is weight of sorbed water per weight of
silica gel, C is moisture concentration in the gas
phase in g/cm?, T is degrees Kelvin and P(T) is
the vapor pressure of water in atmospheres at
temperature T. Inlet moisture concentration is
calculated to be 0-230 x 107% g/em> We will
assume that initial temperature is 50°C. As a
point about which to linearize I' we will choose
C =0115 x 107 *g/cm® and T = 38°C.
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Fi1G. 2 Sorption of H,O on silica gel--concentration break-
through curve, x = 9-25.

Figures 2 and 3 show the time response at the
exit to a step change in inlet concentration. The
solid lines refer to the case of a —25°C step
change in inlet temperature; the dashed line is
for zero change in inlet temperature.
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The most interesting feature of the curves is
that actually two breakthroughs in concentra-
tion and temperature occur. After the first
breakthrough, the responses level off on a
plateau which appears to correspond to a

Dimensionless time, 7
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F1G. 3. Sorption of H,O on silica gel-—temperature break-
through curve, x = §-25.

psuedo steady state condition. After remaining
a while at this condition a second breakthrough
occurs during which the responses move to
their final values. The isothermal response,
shown in Fig. 4, shows only the single break-
through. The two breakthroughs are obviously
due to the coupling between temperature and
concentration. This phenomenon is better
understood in the light of a thermodynamic
analysis [18, 19]. In this analysis the resistances
due to diffusion and heat conduction are
neglected and only the equilibrium coefficients
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and convective transport terms are considered.
This results in a hyperbolic system of two
coupled first order partial differential equations
whose solution has the form of two steps

100

Y

O-80

0-60 |~

0-40 |~

0-20 t~

Dimensioniess conceniration,

[ | |
0 5 10 15 20

Dimensionliess time, /

Fic. 4 Isothermal concentration breakthrough curve at
x = 925

travelling at two distinct characteristic veloci~
ties. Resistances due to diffusion and heat
conduction have the effect of speeding up the
characteristic velocities and smoothing the
steps into sigmoids. It should be added that the
numerical results presented here differ little
from a Nu and Sh number of 3, presented in
[18] and [19].

Figure 5 presents transverse concentration
and temperature profiles at the exit for two
dimensionless times corresponding to 125 and
25s.

In conclusion the authors would like to add
that they recently learned that the phenomenon
of two distinct breakthroughs, as predicted from
the theoretical analysis presented here, has been
observed experimentally in commercial type
drying equipment [22, 23].
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TRANSPORT DE CHALEUR ET DE MASSE TRANSITOIRE DANS UN REGENERATEUR
ADIABATIQUE—REPRESENTATION PAR UNE MATRICE DE GREEN

Résumé—On propose un modéle mathématique décrivant le transport de chaleur et de masse transitoire
4 D'intérieur d’'un milieu poreux avec un écoulement en bloc dans un conduit adjacent. Ce processus
physique correspond & des échangeurs de masse du type régénérateur dans lesquels un soluté est enlevé
d’une phase fluide par sorption sur la surface interne d’un matériau poreux.

On présente une formulation intégrale de la solution du modéle mathématique & I’aide de fonctions de
Green. Une fois que les fonctions de Green sont déterminées, la solution du probléme pour n’importe
quelle condition arbitraire d’entrée, initiale et aux frontiéres est obtenue aisément par des intégrales
d’évaluation faisant intervenir les fonctions de Green et les conditions connues. La solution du probléme
mathématique pour le cas dans lequel la production de chaleur et de masse a lieu 4 P'intérieur du matériau
poreux ‘peut aussi s’écrire immeédiatement comme une intégrale faisant intervenir les fonctions de Green
et les fonctions connues décrivant la production de chaleur et de masse.

Dans le cas spécial o la résistance au transport de chaleur et de masse entre la phase s’écoulant dans
le conduit et la surface extérieure du milieu poreux est négligeable, les fonctions de Green sont déterminées
dans le domaine de Laplace de la variable temporelle. Des solutions exactes utilisant ces fonctions de
Green sont obtenues pour des conditions initiales constantes et des conditions en échelon a P'entrée.
Ces solutions permettent le calcul des profils de température et de concentration a I'intérieur du matériau
poreux lui-méme. De telles solutions complétes de probiémes semblables n’ont pas été décrites auparavant
dans la littérature. Ces solutions sont sous la forme d’intégrales impropres, qui sont mieux évaluées a

P’aide d’un calculateur numeérique.

On a trouvé que les courbes de sortie pour 'échangeur de masse adiabatique présentent actuellement
deux fronts 4 la différence du front unique présenté par I’échangeur de masse isotherme.

INSTATIONARER WARME- UND STOFFAUSTAUSCH IN
EINEM ADIABATEN REGENERATOR

Zusammenfassung—FEs wird ein mathematisches Modell zur Beschreibung der instationdren wirme- und
Stoffiibertragung in einem pordsen Medium mit Propfenstrdmung in einem anschliessenden Kanal
vorgefiihrt. Dieser physikalische Prozess beschreibt einen Regnerativ-Stoffaustauscher bei dem eine
Losung aus der fliissigen Phase in die inneren Querschnitte des porosen Mediums wandert.
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Eine integrale Formulierung der Losung des mathematischen Modells in Ausdriicken der Green’schen
Funktion wird angegeben. Wenn die Green’schen Funktionen bestimmt sind, kann die Ldsung des Prob-
lems fiir alle beliebigen Eintritts-, Anfangs- und Randbedingungen leicht erhalten werden durch Auflosung
der Integrale unter Benutzung der Green’schen Funktion und der bekannten Bedingungen. Die Ldsung
des mathematischen Problems fiir den Fall der Warme- und Stofferzeugung im pordsen Material kann
ebenfalls sofort ermittelt werden als Integral, das die Green’schen Funktionen und die bekannten
Beziehungen fiir die Entstehung von Wirme und Stoff einschliesst.

Fir den Sonderfall, vernachldssigbaren Widerstands beim Wirme- und Stoffaustausch zwischen
stromendem Medium im Kanal und der Aussenfliche des pordsen Mediums, sind die Green’schen Funk-
tionen im Laplace’schen Gebiet durch die Zeitvariable bestimmt Mit diesen Green’schen Funktionen
erhiilt man exakte Lésungen fiir konstante Anfangsbedingungen und stufenweise Anderungen der Zugaben
am Eintritt. Diese Losungen erlauben die Festlegung von Temperatur- und Konzentrationsprofilen im
pordsen Material. Solche vollstindigen Losungen fiir einfache Probleme sind vorldufig in der Literatur
nicht bekannt. Diese Losungen sind angegeben in Form uneigentlicher Integrale, welche sich am besten
auf einem Digitalrechner auswerten lassen.

Es wurde festgestellt, dass die Durchbruchs-Kurven fiir den adiabaten Stoffaustauscher zwei Durch-

briiche zeigen im Gegensatz zu nur einem Durchbruch beim isothermen Stoffaustauscher.

HECTAHHOHAPHBIH TENJIO-M MACCOOBMEH B AJJMABATHYECKOM
PETEHEPATOPE.

MATPUYHBIE NIPEACTABJAEHUST OYVHKIIUN 'PUHA

Aunoranma—IlpeanaraeTcs MareMaTHYeckas MOHelb JAAA ONHCAHMA HECTAIMOHAPHOIO
TeILIIO-H MaccoobMeHa B MOPUCTOH cpefie ¢ Te4eHueM B IPUJIEHAINEM KaHale. ITOT usudeckuit
TPOLECC XaPAKTEPEH MAiIA MACCOOGMeHHUKOB pereHepaTIBHOTO TUIIA, B KOTOPHX PAaCTBOPEHHOE
BemecTBO abcopOupyerca U3 upaxot (ashl Ha BHYTPEHHIOI INIOBEPXHOCTL I[I0PHCTOrO
MaTepuana.

Wnrerpansnan GOpMymMpOBRA DelIeHHA MarTeMardueckoll mofenn Raetca B QYHRUMAX
I'puna. llocae Toro, waw ompefesenst ynxuuu I'puna, serko noJyvaercs pemieHue 3a7adu
MIA J00HX MPOUBBOIBHEIX BXOJHBIX, HAYANLHHX M IPAHUYHEIX YCJOBU TyTeM OLeHKU
HHTETPaJOB, BRIoYawmux ¢ynxuuy I'puna u naBecTHEIe yeaopuda. Peluenne maTremMaTudeckoit
3afavy QA CAYYaA BHAETEHUA TeNJIa B NMOPUCTOM MaTepuale MoMerT OHTHh TaKMe HEmoc-
PedCTBEHHO B3MHCAHO B BHJe HHTerpana, Bruovawinero $ymunum [pueHa M u3BecTHBIO
QyHKIUM, ONuCHBAONIMe BEIIENEHNE TEIIa U MACCH.

JaA 4acTHOTO ciyvas NPeHeGpPeMMO MAJOr0 CONpPOTHBIIEHHA TEINIO-U MACCOOOMEHY
Mexay Teryuyelt $asoit B kamame M Hapy#HOM NMOBEPXHOCTBIO HOPUCTON cpepnl PYHKIUM
I'puna onpepenenn B naniacoBolf obiacTu mepemenyo¥ no Bpemenu. Ilpu MCnob30BAHUN
aTux QyHKuui I'prHa nonyYeHH TOYHEE PELICHUA [JJA NOCTORHHHIX HAYAIBHHIX YCIOBMH H
CTYNEeHYATOro M3MEHeHWA HA BXO[e. IJTH peUleHHA [O0B3BOJIAIT PACCUUTATh npoduan
TeMIepaTypH 1 KOHNEHTPALMK B CAMOM MOPMCTOM MaTepuadie. Takue peleHNs aHATOTHYHBIX
3afad A0 cux nop He Gpin onyOJMKOBAHHL B JIUTEPAType. ITH PEIEHHA TNOJYYeHH B BUfE
HeCOGCTBEHHEIX MHTErPAOB, KOTOPHE YHOOHee BCETO PACCUMTATH HA HUPPOBON BHIYMCIH-
TEAHHON MalInHe. YCTAHOBJIGHO, YTO KpHBble afCOPONUONHOre HMKIa Aas aguabaTHuecKoro
MaCcCOOOMEHHMHKA MMEI0T BE KPHTHYECKUX TOYRH B MPOTHBOHOIOMHOCTD HB0TEPMUUECKOM Y

MacCOOOMEHHMKY, XaPAKTEPUBYIOUIEMYCA OHOMN KPMTUUECHOM TOUKOH,

833



