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Abtrac-A mathematical model is proposed which describes transient heat and mass transfer within a 
porous medium with bulk flow in an adjacent channel. This physical process is descriptive of regenerative 
type mass exchangers in which a solute is removed from a fluid phase by sorption onto the internal surface 
area of a porous material. 

An integral formulation of the solution to the mathematical model in terms of the Green’s functions is 
presented. Once the Green’s functions are determined the solution to the problem for any arbitrary inlet, 
initial and boundary condition is readily obtained by evaluating integrals involving the Green’s functions 
and the known conditions. The solution to the mathematical problem for the case in which generation of 
heat and mass occurs within the porous material can also be written down immediately as an integral 
involving the Green’s functions and the known functions describing the generation of heat and mass. 

For the special case where resistance to heat and mass transfer between flowing phase in the channel and 
external surface of the porous medium is negligible, the Green’s functions are determined in the Laplace 
domain of the time variable. Using these Green’s functions exact solutions are obtained for constant initial 
conditions and step change inputs at the inlet. These solutions allow calculation of temperature and con- 
centration profiles within the porous material itself. Such complete solutions to similar problems have 
not previously been reported in the literature. These solutions are in the form of improper integrals, which 
are best evaluated using a digital computer. 

It was found that the breakthrough curves for the adiabatic mass exchanger actually exhibit two break- 
throughs in contrast to the single breakthrough exhibited by the isothermal mass exchanger. 
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matrix of constants defined by equa- 
tion (47); 
cross sectional area ofchannel [cm’] ; 
diagonal elements of -A ; 
functions defined by equation (77); 
matrix of constants defined by equa- 
tion (44); 
function defined by equation (79) ; 
function defined by equation (80) ; 
concentration of diffusing species in 

gas phase [g/cm”] ; 
solute concentration in the channel 
Cg/cm”l ; 
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functions defined by equation (76); 
heat capacity of matrix [Cal/g ‘EC] ; 
heat capacity of fluid phase [Cal/g 

OK];. 
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brium relations~p is linearized [g/ 
cm31 ; 
functions defined by equation (75); 
molecular diffusivity [cm’/s] ; 
dimensionless generation terms of 
mass and heat in equations (31) and 

(32) ; 
functions defined by equation (72); 
4 x 4 array of Green’s functions ; 
where indicated, 2 x 2 submatrix of 
Green’s fictions ; 
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diffusion coefficient corrective factor 
for porous medium which allows for 
the fact that diffusion is not along a 
straight path, dimensionless ; 
elements of the Green’s function 
matrix ; 
matrix defined by equation (48) ; 
heat transfer coefficient between 
channel and pmxs material inter- 
face [Cal/s cm2 “K) ; 
mass transfer coefficient between 
channel and porous material inter- 
face [cm/s] ; 
Henry’s law type equilibrium con- 
stant, dimensionless; 
effective thermal conductivity of the 
bulk porous medium, 

k + [&/(l - E)] k, [Cal/s cm ‘K] ; 
effective thermal conductivity, 

(1 - E) k, + sk,[cal/s cm OK] ; 
thermal conductivity of fluid phase 
[Cal/s cm OK] ; 
thermal conductivity of non-fluid 
phase [Cal/s cm OK] ; 
temperature coefficient of sorption 
equilibrium, 

ar 

- PpE c,,,To 
[g/cm3 "K]; 

thickness of porous material in y, 
direction [cm] ; matrix differential 
operator defined by equations (12)- 

(15); 
adjoint differential operator defined 
by equations (17H20) ; 
dimensionless parameter, 

three dimensional array of 8 com- 
ponents whose real and imaginary 
parts are defined by equations (89) 

(101); 
Nusselt number, h,L/k,,, dimension- 
less ; 
constant decoupling matrix defined 
by equation (55) ; 
active perimeter of channel [cm] ; 

Peclet number, av/pgD, dimension- 
less ; 
matrix of constants defined by equa- 
tion (61); 
heat of sorption [Cal/g] ; 
matrix of constants defined by equa- 
tion (64); 
the characteristic roots of the matrix 
[-(1 - ily)A], defined by equa- 
tions (53) and (54); 
Laplace transform parameter ; 
Sherwood number, h,L/cgD. di- 
mensionless ; 
temperature [“K] ; 
dimensionless time, 

gDt,& + (1 - E) K] L? ; 
substitution for t - t ; 
time [s] ; 
temperature of fluid phase in the 
channel [OK] ; 
dependent vector whose components 
U 1, U,, U3, U4 represent dimension- 
less concentration and temperature 
within the porous material and in the 
channel ; dependent subvector U 1, 

U,; 
dimensionless fluid phase solute con- 
centration within the porous 
material, CC, ; 
dimensionless temperature within 
the porous material, T/T, ; 
dimensionless solute concentration 
in the channel, C,/C, ; 
dimensionless temperature in the 
channel, T,/T, ; 

Us, Uz, constant dimensionless concentra- 
tion and temperature at the inlet ; 

V, gas velocity through the channels 

[cm/s] ; 

VjRY functions defined by equation (84); 

51, functions defined by equation (85) ; 

x, dimensionless coordinate in direction 
of flow, xJLPe ; 

I 
X, substitution for 5 - x ; 

xA~ coordinate in direction of gas flow 
(zero at gas inlet) [cm] ; 
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dimensionless coordinate in the 
direction of diffusion, yJL ; 

coordinate in the direction of diffu- 
sion [cm] ; 
complex quantity defined by equa- 
tions (82) and (83); 
branch of J(Z,) defined by equation 

(81). 

Greek symbols 
generalized Lewis number for the 
porous medium, 

E + (1 - &)K k 

wD ’ ppcp + &I ’ 
equilibrium composition of solute on 
sorbent, g solute/g sorbent ; 
dimensionless equilibrium relation- 
ship such that 
p$ = constant + KC - K,T ; 
dimensionless parameter which is a 
measure of the effect of concentra- 
tion changes on temperature, 

qK 5. 

~pCp + K,q’ T,’ 

Dirac delta function ; 
Kronecker’s delta ; 
porosity of the matrix, vol. voids/ 
total vol., dimensionless; arbitrary 
positive number used in limit ex- 
pressions ; 
dimensionless coordinate in the 
direction of diffusion, same as y ; 
diagonal matrix whose diagonal is 
-a, and -aa,; 

dimensionless parameter which is a 
measure of the effect of temperature 
changes on concentration, 

(I - s)Kt To. 
~+(l -c)K’C,’ 

dimensionless longitudinal coordin- 
ate, same as x; 
density of fluid phase [g/cm31 ; 

mass of sorbent per unit vol. of solid 
phase [g/cm31 ; 
dimensionless time, same as t ; 
function defined by equation (73) ; 
function defined by equation (74); 
transformed matrix of Green’s func- 
tions, PG. 

INTRODUCTION 
THIS paper presents solutions to the system of 
partial differential equations describing unsteady 
state simultaneous heat and mass transfer in 
porous media These partial differential equa- 
tions are descriptive of the physical process 
occurring in adiabatic regenerator type mass 
exchangers where a solute is sorbed from an 
inactive carrier gas onto the internal surface 
area of a porous material. The essential feature 
of the process regardless of the exact geometry 
is that mass and heat transfer due to diffusion 
and conduction occur in a region different from 
the flowing fluid phase, where mass and heat 
transport is due primarily to convection. 

In designing regenerator type mass exchangers 
one is usually interested in the so-called break- 
through curves, that is, the time response of the 
effluent stream solute concentration to the 
input concentration. In 1952 Rosen [l] ob- 
tained a solution for the isothermal case in 
which a solute is sorbed internally within 
spherical particles from a gas phase passing in 
bulk flow through the bed of particles. By 
assuming a linear equilibrium relationship 
between solute in the fluid phase and sorbed 
phase Rosen obtained an analytical solution for 
the breakthrough curve as a real integral which 
was then evaluated numerically. The essential 
feature of Rosen’s model is that mass transfer 
within the porous particle is described in terms 
of a diffusion process. Rosen’s model also allows 
for resistance between the bulk fluid phase 
outside the particles and the particle external 
surface by means of a constant mass transfer 
coefficient. Previous to Rosen’s work resistance 
to mass transfer within the particle had also 
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been accounted for by means of an overall 
mass transfer coefficient. This model of the 
process gives rise to the well known Schumann- 
Anzelius solutions [2, 31 which have been 
extensively tabulated by Larsen [4]. These 
solutions are also well discussed in the book by 
Jakob [5]. Masamune and Smith [6, 71 have 
generalized Rosen’s solutions to include a third 
resistance, the rate of sorption within the porous 
particle. Using Green’s functions and matrix 
representation Wernick [8] presented solutions 
to this problem for arbitrary initial bed loading 
and inlet conditions. Other systems of partial 
differential equations handled by matrices and 
Green’s functions are the electromagnetic equa- 
tions described in Morse and Feshbach [9] 
and the creeping flow equations of Oseen [lo]. 

If the process of sorption from a fluid phase 
within a porous material is viewed as adiabatic, 
the heat of sorption will cause temperature 
gradients within the porous materials. Since the 
equilibrium relationship between solute in the 
sorbed and fluid phase may depend strongly 
upon temperature as well as concentration, 
a coupling between the concentration and 
temperature profiles is established. Coupled 
problems in which resistance to mass and heat 
transfer in the direction transverse to the flow 
of the fluid phase is accounted for by means of 
overall transfer coefficients have been treated 
numerically by Bullock [ 111 and Chi [12]. 
Mathematically this description of the process is 
somewhat simpler than that in which the 
mechanism of heat and mass transport in the 
porous material is considered as a diffusional 
process. With overall transfercoefficientsa system 
of four first order partial differential equations is 
obtained. With diffusional transport in the 
porous region, two second order and two first 
order partial differential equations are obtained. 

One of the earliest treatments of two coupled 
linear diffusion equations appears to be that of 
Henry [13]. The more recent monograph of 
Luikov and Mikhailov [14] presents solutions 
to linear systems of two coupled diffusion equa- 
tions for boundary conditions of first, second and 

third kind. Norden and David 1151 have pre- 
sented finite difference solutions to nonlinear 
systems of coupled diffusion equations arising in 
their studies of the drying of wool. In none of the 
work of these latter three groups were provisions 
made to account for flow of a fluid phase at the 
boundaries of the region in which the diffusional 
transport is occurring. Thus, the physical system 
considered in this paper is a combination of the 
type of process considered by the authors in the 
above paragraph and the type of process con- 
sidered by Rosen Cl]. 

The most general treatment of a problem 
involving coupled heat and mass transport by 
diffusion in a stationary region with convective 
transport in an adjacent region is the strictly 
numerical solution of Weber and Meyer [16] 
which appeared while this study was in progress. 
Since they solved the system of partial differential 
equations by finite differences they were able to 
handle nonlinear equilibrium relationships as 
well as nonconstant physical properties. Un- 
fortunately, their solution requires prohibitively 
lengthy computer times. In order to keep the 
computer time down to a reasonable value 
rather large increment sizes were used ; this can 
give rise to appreciable error. As a result of this 
Weber and Meyer did not explore the behavior 
of this system. By assuming that physical 
properties are constant and that the equilibrium 
relationship can be linearized, a linear system 
of four partial differential equations is obtained 
whose analytical solution is presented in this 
paper. In the next section the problem is defined 
mathematically and an integral representation 
of the solution is presented in terms of the 
Green’s function matrix and arbitrary but 
known initial and inlet concentration and 
temperature profiles. The advantage of pre- 
senting the solution in this form is that once the 
Green’s function matrix has been obtained the 
solution can be obtained for any given inlet and 
initial conditions in terms of integrals involving 
these known conditions and the known Green’s 
functions. The effect of arbitrary but known 
generation terms of heat and mass may also be 
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expressed as integrals involving these terms and 
the Green’s function. 

A special case of the solutions presented in 
this paper has been given previously [17]. 
The solution in [17] is for the case when the 
sorbing medium is semi-infinite in the direction 
transverse to the direction of flow, or alter- 
natively, when the values of time under con- 
sideration are small Since in [17] also no 
resistance to heat and mass transfer in thechannel 
was considered, solutions to step inputs in 
concentration and temperature could be ex- 
pressed as linear combinations of error functions. 
For constant generation of heat and mass in a 
fuel cell electrode, solutions were obtained as 
repeated integrals of error functions. In the 
present paper solutions are obtained which are 
good for all values of time for sorbing media of 
finite thickness, and a more general Green’s 
function formulation is given. 

MODEL AND ITS INTEGRAL REPRESENTATION 

Consider equilibrium sorption and diffusion 
of a dilute species, such as water vapor, and 
diffusion of heat with generation in a porous 
medium of finite thickness with bulk flow in an 

L e 

( Yor 17 in dimensionless form) 

FIG. 1. Coordinate system for diffusion of heat and mass in a 
porous medium with bulk flow in an adjacent channel. 

adjacent channel as shown in Fig 1. According 
to Henry’s classical analysis of diffusion of heat 
and moisture in a textile fiber [13], its more 
recent treatment from the point of view of 
irreversible thermodynamics in Luikov and 
Mikhailov’s book [14], and our previous 
description of the model [17-191, the coupled 
partial differential equations for diffusion and 
rapid sorption in the matrix are 

au, _ AacT” a2u1 0 

at at-w= (1) 

au, au2 a2u2 o 
-y,,+,,-u,y,= . (2) 

Ui is the dimensionless concentration in the 
porous matrix and Uz is the dimensionless 
temperature as defined in the Nomenclature. 
The dimensionless groups Iz and y are measures 
of the coupling between temperature and con- 
centration. The group (r involves a ratio of the 
thermal diffusivity to molecular diffusivity. All 
three groups depend upon the linearized equi- 
librium relationship for the diffusing substance. 

The partial differential equations for the 
dim~sionless con~ntration in the channel, 
U3 and for the temperature U4 are 

s + Sh(U, - U, )=O (3) 
y=o 

au, Nu 
x + $b - fJ2 )=O. (4) 

y=o 

Constant Sherwood and Nusselt numbers have 
been used to correct for any resistances to mass 
and heat transfer in the thin channel. In a 
previous publication we have shown the extent 
of validity of such assumption for a simple 
regenerator problem [20]. The group L.e differs 
from the usual Lewis nnmber principally due 
to the fact that the thermal conductivity involves 
the conductivity of the matrix as well as of the 

gas. 
To completely determine the solution to 

equations (l)-(4) we must specify inlet, initial 
and boundary conditions. The inlet conditions 
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are that the functions U,(t, 0) and U,(t, 0) must 
be given for t > 0. Initial conditions are that 
Ur(O, x, y) and U,(O, x, y) are given for x > 0, 
0 -=c y < 1. At y = 0 we have the boundary con- 
ditions 

au1 -. .- 
dY y=o 

+ Sh(U, - u, )=O (3 
y=o 

au2 
ay s=o 

4- Nu(U, - u, ) = 0. (6) 
y=o 

These equations result from the continuity 
of heat and mass fluxes at the interface between 
the porous media and the fluid phase in the 
channel. A final boundary condition at y = 1 
must be specified. We will assume that at y = 1 
the porous material is impermeable to heat and 
mass. This implies that the dimensionless con- 
centration and temperature gradients (aU,jay) 
and (dU,/ay) be zero at y = 1. In the more 
general Green’s function formulation that follows 
it is necessary to decide only whether the 
boundary condition is of first, second or third 
type. Thus we will specify the more general 
boundary condition of second type, that is the 
gradients (XJl,/8y) and @U,/dy) must be speci- 
fied as functions of t and x at y = 1. 

Using equations (5) and (6), equations (3) 
and (4) can be rearranged into 

tion 
A completely non-homogeneous problem for 

the set of partial differential equations given by 
equations (lW4) is best solved by the method 
of Green’s functions as are all other linear 
non-homogeneous boundary value problems. 
To apply the method we must first obtain an 
integral theorem giving the solution to the non- 
homogeneous problem in terms of Green’s 
functions. To obtain such an integral representa- 
tion, we form a divergence expression as 
follows : 

(LU)*G - U*(LG) = a divergence (11) 

where U is the unknown vector, L the differential 
operator matrix, G the Green’s function matrix, 
* refers to the transpose of the matrix and -c 
refers to the adjoint to be constructed. Specific- 
ally let L be the operator such that L operating 
on the column vector U with components 
U,, U,, U,, U4 results in the column vector LU 
whose four components are 

&Jr 
(LU), = 2. - dv  

~ XJ, 

T-Y% 
(12) 

au3 au, __-__ 
2X ay )‘=o = 

0 (7) 

au, 1 i’l_Jz 
__--__ 

dX LA? (1y y=o 
= 0. @t (151 

a2 u, (LU),= -rc!$+E&E- 
Zy2 

(13) 

(LU), = 2 + Sh(U, - U, ) (14) 
)‘=o 

For the case where resistance to mass and heat 
transfer is negligible between channel fluid 
phase and porous material interface, i.e. Nu 
and Sk -+ co, boundary conditions (5) and (6) 
become 

U,I,=o = U3 (9) 

u&.=0 = U,. (IO) 

This case occurs when the channel is very thin 
or when the diffusivities in the matrix are much 
lower than those in the channel. 

Let G,(i, j = 1,2,3,4) be the 4 x 4 array of 
Green’s functions. For the present we will 
consider each Gij as a six place function of the 
three source coordinates (t, X, y) and the three 
observer coordinates (7, 5, q), that is, 

G, = GtJ(r, <, PJ ; t. X, J+). (16) 

We can now construct a matrix adjoint operator 
E which when operating on the matrix of Green’s 
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functions G, yields ~e~ollowing set of elements and the homogeneous boundary conditions 

of the adjoint system (LG), 
aG,j 
av = + Sh(G,j - G,j )=O (23) 

w dGlj aG,j a2GIj 
Y 0 y=o 

-- 
(LGhj = - at + Y at 83 = 0 (24) 

(18) aG, 
BY y=l 

= 0, i = 1,2; j = 1,2,3,4. (25) 

(LG),j = - 2 + Sh(G,j - Glj ) (19) 
Initial and inlet conditions which the G, 

y=o 
must satisfy are given by 

G,, = G,, = G,, = Gzz = 0 when (z - r) = 0 
aG, NU 

j;;-+~(G~j-~LeGzj 1. 
and (& n) # (x7 Y) cw 

y=o 
(20) 

G,, = G,, = Ghl = Gh2 = 0 when t - x = 0, 
n=Oandz-t>O (27) 

The details of the construction are more fully 
G,, = G23 = G,, = GZ4 = 0 when 5 - x = 0, 

=Oandz-t>O (28) 
given in [18]. The const~ction of the adjoint i 
system for the case when Nu and Sh are infinite 

33=G34=G43=G44=Owhenr-x=0, 

has been given in [17]. 
z--t>>. (29) 

An integral representation of the vector of 
solution functions Uj (z, r, q), j = 1,2,3,4, can now 
be written as 

y (r,5, V) = ’ 1 ([G&, <, 4; 4 x, Y) - yG,,k 5, rl; 0, x, Y)] u,tO, x, Y) + [G& C, r; 0, x> Y) 

1s 0 t 

- AGlj(rv t, v ; 0, ~7 Y)] UdO, X, Y)> dx dY + 
s 

[GsXr:) & ?; t, 0) LJa (C 0) 
0 

s 5 

+ G&, 5, q ; t, 0) U&, O)] dt + 
SSL 

G,,&, t, q; t, x, 1) 
aw, X, 1) 

ay 
+ aG,j tr, t, v ; t, -Y, 1) 

00 

X 
aw, x7 11 dx dt 

ay 
] . (30) 

Using the Dirac delta function notation and 
summarizing the construction in [18], one 
obtains that the G, must satisfy 

For the non-homogeneous case, where 

(LG), = 6ij6(Z - t) ace - 4 &I - Y)9 (LU)i = FL4 X, y), i = 1,2; (LU), = Fit, X), 

i = 1,2; j = 1,2,3,4 (21) 
i= 3,4 (31) 

(~G), = &ij(r(lt. - t)4jfr - xL 
we add the following terms to the right hand side 

i = 3,4 ; j = 1,2,3,4 (22) of equation (30) 
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rr1 2 

r‘t 4 

+  5 S 1 Fit, X) Gi,lTT C v ; t, X) dx dt. (32) 
0 0 i=3 

Physical interpretation 
Each element G, of the Green’s function 

matrix has an interesting physical interpretation. 
For example, G, i(~, 5, q; t,, x,,, y,J is the dimen- 
sionless concentration at time r and the point 
(5, q) due to an instantaneous unit source of 
mass released at time t, at the point (x,, y,). 
Similarly G&z, ~$9 ; t,, x0, y,,) is the dimension- 
less temperature at time z and the point (<, ‘1) 
due to an instantaneous unit source of mass 
released at time to at the point (x,, ye). In a like 
fashion we can give a physical interpretation 
for the remaining elements of the Green’s 
function matrix. 

Notice that the elements in the third and 
fourth rows (i = 3 or 4) of the Green’s function 
matrix have no functional dependence upon y 
and that elements in the third and fourth 
columns (j = 3 or 4) have no functional depend- 
ence upon q. 

INFINITE NUSSELT AND SHERWOOD NUMBERS 

In some physical applications the resistance 
to mass and heat transfer between flowing fluid 
phase in the channel and the interface of the 
porous media is negligible. This will be the case 
for turbulent flow or for flow through systems 
where the tortuosity of the path of flow causes 
considerable mixing. It will also occur when the 
diffusivity in the matrix is much lower than in 
the channel, as in molecular sieves, or when the 
channel is very thin. By neglecting this resistance 
mathematical simplification is obtained. 

If we allow the parameters Nu and Sh to 
approach infinity, the system of equations to be 
solved is (l), (2), (7) and (8) with boundary con- 
ditions (9) and (10). The remaining boundary, 
initial, and inlet conditions remain unchanged. 

The integral representation, equation (30) 
still holds ; however, in the adjoint system of 
equations for the Green’s functions equations 
(19) (20) are replaced by 

and boundary conditions given by equations 
(23) and (24) become 

G3j = Gijl>>=O (35) 

Gkj = ctLe Gzjjrzo. (36) 

Using (35) and (36) we can eliminate G3j and 
G4j from (33) and (34). From boundary con- 
ditions (9) and (10) we see that we need only to 
have a solution for U,(t, x, y) and U,(t, Y, y). 
Therefore for the remainder of this section we 
shall restrict ,j to taking on only the values 1 and 
2. 

In other words we need only solve for the 
submatrix 

I- 1 

Anticipating in advance that r and t and 4 
and x will enter the Green’s functions as 
r - t and 5 - x, make the change of variables 
t’ = z - t and x’ = < - X. 

The adjoint system of equations and boundary 
conditions become 

dGlj aG,j d’G,j ~- 
at’ y at’ ay2 

_ - - = hlj &t’) 6(x’) fqq - y) 

(37) 

_ A aGlj + aG2j a2Gzj 
--gi- ~-“-7- 

aY 

= szj s(t’) Stx’) &VI - Y) (38) 
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GIj = Gzj = 0 when t’ = 0, x’ > 0 (41) 

0. (42) 

Equations (37) and (38) can be written in matrix 
form as : 

1 0 

[ 1 0 a 

= W) e4 WI - Y) 
6lj 

[ 1 6 (43) 
25 

where for convenience we have dropped the 
primes on t and x. Define the following matrices : 

B=I-: -:I 
L 

rGll i21 

qt, %Y) = 1G,, G,, 1 1 (45) 

Multiplying equation (43) by B-l gives the 
matrix equations : 

(46) 

where 

From their definitions 

ly = 

[ 
1 +(1 _Ei):](l +gj (4g) 

From the second law of thermodynamics it 
can be shown that K and &, are positive quanti- 
ties. Therefore, equation (49) shows that 0 c Ay 
< 1 or ~uivalen~y 1 - ly > 0. Thus the 

problem of division by zero is avoided in 
equations (47) and (48). 

Let P be a non-singular matrix such that 
PAP- ’ = A, where A is a diagonal matrix (for 
the present we are assuming that such a P exists). 
Premultiplying equation (46) by P and sub- 
stituting PA = AP we obtain : 

let 

Y/=PG. (51) 

Since the elements of P are constants they can 
be brought inside the differential operators 
d/at and a2/ay2 SO that we obtain : 

ay 
-;i;+“=Pr-I 

aY2 
(52) 

The characteristic roots of [ - (1 - Ay) A] are 

II = $ ((I + a) + J[(a - Q2 + 4+]] (53) 

r2 = :[(I + a) - &a - 1)2 + 4d.y]). (54) 

Following Henry [13] we could name the 
above roots a concentration root and a tempera- 
ture root When the coupling is weak so that R 
and y are small or a is extremely large one of the 
above roots approaches a, the coefficient of the 
Laplacian operator in the dimensionless temp- 
erature equation, and the other root approaches 
unity, the coefficient in the dimensionless con- 
centration equation. However, as Henry said, 
“ . . . . . when coupling exists all roots are con- 
cerned with both Yukon processes to a greater 
or lesser extent.” 

The dimensionless groups a, and Ay are all 
positive numbers. Hence (a - 1)2 -I- 4aAy > 0, 
and the characteristic roots of A are distinct. 
This is sufficient condition that a non-singular 
matrix P exist such that PAP-’ = A, a diagonal 
matrix. The matrices P, P-‘, and A are found to 
be: 

r-n I-r,~ 
P= 1 -A l-r, 1 (55) 
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p-l_ -1 1-b -U-rl) 
[ k(r, - r2) R -A 1 (56) 

1 
0 -9 --.._ __ 

1 - iy 

Define 

ai=f’- j= 1,2. 
1 - ;ly 

An aiternate expression for r2 is 

J. (57) 

r2 = + ((1 + CX) - J’[(a + 1)’ - 4a(l - +)J> 

(59) 

from which we see that r2 is always positive. 
Therefore, the ai defined in equation (58) are 
positive quantities. Using subscript notation we 
can now write equation (52) as 

where 

Q = i-l, ; 1 ;; 1 :‘I 
2 

-h, 1 -a, 
= 

- Aa, 1 l-a,. 
(61) 

Equations (39) and (40) can be rearranged 
into the following matrix equation 

Using the substitu~on G = P- ’ Y we obtain 

where the matrix R is defined as 

R=P 
-(1 - 

(1 - 

In subscript notation we have as the partial 
differentiai equations and boundary conditions 
that Y~j must satisfy : 

ayY, 

at 
ai%:’ =; 8(t) 6(x) 6(~ - y) Qij (65) 

Yii = 0 when t = 0 (67) 

WI 

We solve the above system by means of a 
double Laplace transform with respect to t and 
x. Inversion of the transform with respect to the 
transformed x-variable can be accomplished 
analytically. Inversion with respect to the trans- 
formed t variable, however, must be done by 
means of the inversion theorem and contour 
integration in the complex plane. The solution 
vector U is then obtained by substituting G and 
the appropriate initial, inlet and boundary 
conditions into equation (30) and performing 
the indicated integration. For constant initial 
and inlet conditions a somewhat simpler 
approach can be taken. Since the system of 
partial differential equations, equations (l)-(4), 
is linear we can choose the dimensionless 
temperature and concentration so that the 
initiat conditions are zero. FOF zero flux at 
y = 1 we can write the solution for constant 
inlet conditions of LJz and Uf: as 

+ ur: jG,,+ - t.t,v)dt. f 6% 
0 

In the above the functional dependence on the 
four variables, z, t, { and x has been indicated 

rz) + Le(f - r,)(l - r,)(l - Le) 

r2fP - 11 1 (1 - rJ .- Lf$l - rJ ‘64f 
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in terms of only two new variables, z - t and The symbol R;l denotes the inverse of the 
5 - x. Applying the convolution theorem, the matrix R,. 
Laplace transform Uj with respect to time is In the above expression it should be noticed 

OXs, 5, q) = Vi i G,,(s, 5, q) + IJZ. k C&, <, q) 
that the symbol i when used as a subscript is 
only an index; otherwise it denotes the imagin- 

2 
ary unit ,/( - 1). The value of the integral in the 
above expression is given by the following 

= LJ; expressions. 

2 m 

+ UzaLe 
c 

l- 
p;i ; yk,b, t, 0 ; ?). (70) lim 1 Re [eipAJ(iy)] dy 

e-0 ‘II s 
k=l e 

In the above, each Y, is considered as a four 
place function ‘Pi~~Z - t, 5 - x, y; q). Thus we 
see that we need only the Laplace inverse of 

=:I: kIij%($$V) 

~/sYP&, &f, 0; q). It is this function which we 
actually invert by means of the inversion + cRijcPI ( I -q du 

JijI 

(P&V V) = 
cash vu cos(2 - q) u + cos vu cosh(2 - q) u 

cash 2u + cos 2u 

rpI(% ?) = - 
sinh ~,XJ sin(2 - q) u + sin qu sinh(2 - q) u 

cash 2u + cos 2u 

CR, = kil eAr [Re Wlijk COS Pk - hl Wlijk Sin /3k] 

C,ij = Cl CA’ CR e mijk sin Pk + Im mijk COS pk] 

(72) 

(73) 

(74) 

(75) 

(76) 

(77) 

(78) 

theorem. The details of this inversion are in 
[18]. We obtain the result as a real valued 
improper integral, where Re denotes the real 
part of a complex quantity. 

2 

I 11 
= 

r=l 

+ liml O” Re [eiyff. (iy)] dy 
K s 

v g. 
a, 

(71) 
z-0 

e 

In equations (77) and (78) the plus sign is chosen 
when k = 1, and the minus sign when k = 2. 
1 RI is the determinant of the matrix R and is 
identically equal to the parameter Le. 

B,(u) = 
u(sinh 2u - sin 2~) 

cash 2u + cos 2u (79) 

B 
2 

(u) = u(sinh 2u + sin 2~) 

cash 2u + cos 2u (80) 



828 C. A. CHASE. DIMITRI GIDASPOW and R. E. PECK 

Z, is that branch of ,,/(Z,) such that 

7-c 
-- 

2 
<argZ, <5. 

Z, is a complex quantity whose 
imaginary parts are given by 

ReZ, = R;#‘;, - I’&) -I- R;,(V:, 

Rem,,, = 

(811 

real and 

- 

- w 
+ 2Wl2R2, - Lel @‘,,V,R - VIM’,,) (82) 

Re m 
ImZ, = 2Rf1VzRVz, + 2R&V,,V,, 

112 = f$ - Re mill (90) 

+ 2(RlzR,, - Le)(l/,.I/,, + ‘,,‘,d (83) Rem R 
- 2 + -~_!.L [ReZ,(R, I V,, 

12* = 21R( 2jRIZ; 

+ R22V,~) + Im-GfR, IV,, + R22Vd] (91) 
,j = I,2 

(84) 

Rem 122 = YR, - -% - Rem,,, (92) 

R 
Rem R 211 = 2. Re mlZl (93) 

12 

,j = 1,2 Re m 
R 

212 = FRe 111122 (94) 
12 

- RI, ; ReZz (85) Rem,,, 2,R, z; [-I - w) ‘1, 

/ZI 1 = ,/[(Re Zlf2 + (lm Z,f2] (86) 

Re 2, = :[$(Z1 + Re Z,)] (87) 

h Z, = &,&(.Z, - Re Z,)]. (88) 

The sign in (88) is plus if Zm 2, B 0 and minus 
ifZmZ, CO. 

RI1 --- 
21RI “I 1 (9% 

Imm 111 = 

R:z v - .__ 
2/R/ iR 1 (97) 

Zm m12, = -1m m122 = ---2 R1z [ReZ2(RllbI + R22V1A - ImZ2(RllJ'iV,, + R22Vl~)1 
2(R(Z2 

(98) 

lmm2,, 
R 

= ~Imrn,,, 
12 

R 
lmm 212 = ~Imm,,, = - lmm2,, 

12 
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Imm 221 = - Im rnzz2 = !.!$f(l -J$++$ k+F[(l -*)y. 

R:, V -- 
2(Rl 2R . 1 (101) 

A computer program has been written to 
evaluate the four integrals defined by equations 
(72)-(101). The program, a listing of which is 
given in [lS], also computes the value of the 

four functions f G,,(r - t, 5; q) dt, i = 3,4 ; j = 
n 

1, 2 at the spe&ied values of z, 5 and q. The 
solution vector Vjr, 5, r~), j = 1, 2, is also com- 
puted for the specified constant inlet conditions 
Vi and Vi. 

Verijkation of the solution 
That the solution given by equations (69)- 

(101) satisfied the partial differential equations 
(1) and (2) and the boundary condition 

au, 
ay ),=I = 

0 

can readily be shown by substituting the solution 
into these equations. The inlet conditions can 
be shown to be satisfied identically by setting 
Lj = q = 0 and performing the indicated inte- 
gration. Analytical verification of the equations 

was not obtained because of the algebraic com- 
plexity of the resulting expressions. Numerical 
verification of (102) was obtained, however, by 
using the solution to calculate numerical values 
for the individual terms. Similarly, numerical 
verification of the zero initial conditions was 
obtained by setting r = 0 in the computer 
program input. 

It should be noticed that if Le = 1, the matrix 
R reduces to the identity matrix, and equations 
(65) and (66) are uncoupled. Setting Le = 1 
yielded numerical results from the computer 

program which checked results obtained pre- 
viously for the decoupled problem [18]. 

Therefore, in view of these numerical and 
analytical verifications, it is felt that the solution 
and computer program are correct. 

Computer time required 
Using an IBM 360/40 the time required to 

calculate results at each desired point (r, r, rr) 
averages about 6-7 s for longitudinal co- 
ordinate r > 2. For smaller values of r, con- 
vergence of the integrals in equation (72) is 
slower, requiring in some extreme cases as much 
as one min of computer execution time. Thus, 
even for the lengthy cases, it is felt that the 
solution presented here offers considerable 
computational advantages over the strictly 
finite difference approach, both in time required 
and in accuracy. Using the solution presented 
here, one is able to calculate results for those 
particular (7, r, q) points desired rather than 
march out the entire solution up to the desired 
point as is necessary with the finite difference 
approach. This can result in considerable 
savings of computer time. 

Application to drying 
Using dimensions representative of actual 

drying equipment, breakthrough curves and 
transverse concentration and temperature pro- 
files were calculated for the drying of moist air 
with silica gel. Saturated air at 25°C is assumed 
to enter 3 in. long cylindrical channels of 0.3 cm 
effective dia. at a bulk velocity of 1 ft/s. The 
internal walls of the channel are assumed to be 
coated with porous silica gel 005 cm thick. 

From Lee and Cummings [21] we can 
approximate the silica gel-water equilibrium 
relationship by 
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r = !!644.c 
PS( T) 

(103) 

where f is weight of sorbed water per weight of 
silica gel, C is moisture concentration in the gas 
phase in g/cmj, T is degrees Kelvin and P,( T’) is 
the vapor pressure of water in atmospheres at 
temperature T. Inlet moisture concentration is 
calculated to be 0*23O x 10e4 g/cm’. We will 
assume that initial temperature is 50°C. As a 
point about which to linearize r we will choose 
C = 0.115 x 10e4 g/cm3 and T = 38°C. 

Rtmensioniess time, I 

The most interesting feature of the curves is 
that actually two breakthroughs in concentra- 
tion and temperature occur. After the first 
breakthrough, the responses tevel off on a 
plateau which appears to correspond to a 

Dlmenslonless time, t 

Ttme 16 I, 5 

FIG. 2 Sorption of H,O OR silica gel---concentration break- 
through curve, x - 925. 

Figures 2 and 3 show the time response at the 
exit to a step change in inlet co~eentration. The 
soiid Lines refer to the case of a -25°C step 
change in inlet temperature; the dashed line is 
for zero change in inlet temperature. 

x=0.2522 a=0 TO16 
y=O.6361 Le=O, 1915 

Inter rondittcns 

Ul 4 

--- , 0 
---I -2 5 

i- 5x ’ j 100 150 200 ; 

Time(t,), s 

psuedo steady state condition. After remaining 
a while at this condition a second breakthrough 
occurs during which the responses move to 
their final values. The isothermal response, 
shown in Fig. 4, shows only the single break- 
through. The two breakthroughs are obviously 
due to the coupling between temperature and 
concentration. This phenomenon is better 
understood in the light of a thermodynamic 
analysis [18, 191. In this analysis the resistances 
due to diffusion and heat conduction are 
neglected and only the equilibrium coefficients 
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and convective transport terms are considered. 
This results in a hyperbolic system of two 
coupled first order partial differential equations 
whose solution has the farm of two steps 

=r “0°1 

A I I I 1 
0 5 IO I5 20 

Dimensionless time. f 

FIG. 4. isothermal concentration breakthrough curve at 
x = 9.25. 

travelling at two distinct characteristic veloci- 
ties. Resistances due to diffusion and heat 
conduction have the effect of speeding up the 
characteristic velocsities and smoothing the 
steps into sigmoids. It should be added that the 
numerical results presented here differ little 
from a Nu and Sh number of 3, presented in 
[18] and [19]. 

Figure 5 presents transverse concentration 
and temperature profiles at the exit for two 
dimensionl~ times ~orrespo~d~g to 125 and 
25 s. 

In conclusion the authors would like to add 
that they recently learned that the phenomenon 
of two distinct breakthroughs, as predicted from 
the theoretical analysis presented here, has been 
observed experimentally in commercial type 
drying equipment [22,23]. 
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TRANSPORT DE CHALEUR ET DE MASSE TRANSITOIRE DANS UN REGENERATEUR 
ADIABATIQUE-REPRESENTATION PAR UNE MATRICE DE GREEN 

RksumC--On propose un modble mathematique decrivant le transport de chaleur et de masse transitone 
a l’interieur d’un milieu poreux avec un ecoulement en bloc dam un conduit adjacent. Ce processus 
physique correspond a des tchangeurs de masse du type rtgenerateur dans lesquels un solute est enlevc 
dune phase fluide par sorption sur la surface inteme d’un matbiau poreux. 

On presente une formulation inttgrale de la solution du modele mathematique a l’aide de fonctions de 
Green. Une fois que les fonctions de Green sent determintes, la solution du problbme pour n’importe 
quelle condition arbitraire d’entree, initiale et aux frontieres est obtenue aisement par des integrales 
d’evaluation faisant intervenir les fonctions de Green et lea conditions connues. La solution du problemme 
mathematique pour le cas dam lequel la production de chaleur et de masse a lieu B l’interieur du materiau 
poreux peut aussi s’ecrire immediatement comme une integrale faisant intervenir les fonctions de Green 
et les fonctions connues decrivant la production de chaleur et de masse. 

Dans le cas special oti la resistance au transport de chaleur et de masse entre la phase s’ecoulant dans 
le conduit et la surface exttrieute du milieu poreux est negligeable, les fonctions de Green sont determinees 
dans le domaine de Laplace de la variable temporelle. Des solutions exactes utilisant ces fonctions de 
Green sont obtenues pour des conditions initiales constantes et des conditions en echelon a Pent&e. 
Ces solutions permettent le calcul des profils de temperature et de concentration a l’intbieur du materiau 
poreux lui-m&me. De telles solutions completes de problemes semblables n’ont pas ttt d&rites auparavant 
dans la littbrature. Ces solutions sont sous la forme d’inttgrales impropres, qui sont mieux evalutes a 
l’aide d’un calculateur numerique. 

On a trouve que les courbes de sortie pour l’echangeur de masse adiabatique presentent actuellement 
deux fronts a la difference du front unique present6 par l’tchangeur de masse isotherme. 

INSTATIONARER WARME- UND STOFFAUSTAUSCH IN 
EINEM ADIABATEN REGENERATOR 

Zusammenfassm~B-Es wird em mathematisches Modell zur Beschreibung der instationaren wlrme- und 
Stofftlbertragung in einem porbsen Medium mit Propfenstromung in einem anschliessenden Kanal 
vorgeftihrt. Dieser physikalische Prozess beschreibt einen Regnerativ-Stoffaustauscher bei dem eine 
Liisung aus der fltissigen Phase in die inneren Querschnitte des porijsen Mediums wandert. 
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Eine integrale Formulierung der L&sung des mathematischen Modells in Ausdriicken der Green’schen 
Funktion wird angegeben. Wenn die Green’schen Funktionen bestimmt sind, kann die Liisung des Prob- 
lems filr alle beliebigen Eintritts-, Anfangs- und Randbedingungen leicht erhalten werden durch Auflasung 
der Integrale unter Benutzung der Green’schen Funktion und der bekannten Bedingungen. Die Liisung 
des mathematisch~ Problems fiir den Fall der W&me- und Stoffer;latugung im poriisen Material kann 
ebenfalls sofort ermittelt werden als Integral, das die Green’schen Funktionen und die bekannten 
Beziehungen fiir die Entstehung von Wtirme und Stoff einschliesst. 

Fiir den Sonderfall, vernachlZissigbaren Widerstands beim WBrme- und Stoffaustausch zwischen 
strBmendem Medium im Kanal und der Aussenfliiche des porijsen Mediums, sind die Green’schen Funk- 
tionen im Laplace’schen Gebiet durch die Zeitvariable bestimmt Mit diesen Green’schen Funktionen 
erhllt man exakte L&ungen fiir konstante Anfangsbedingung~ und stufenwei~~nderungen der Zugaben 
am Eintritt. Diese Liisungen erlauben die Festlegung von Temperatur und Komzzntrationsprotilen im 
poriisen Material. Solche vollstindigen Lijsungen fiir einfache Probleme sind vorlBufig in der Literatur 
nicht bekannt. Diese LGsungen sind angegeben in Form uneigentlicher Integrale, welche sich am besten 
auf einem Digitalrechner auswerten lassen. 

Es wurde festgestellt, dass die D~chbruchs-Ku~en fiir den adiabaten Stoffaustauscher zwei Durch- 
b&he zeigen im Gegensatz zu nur einem Durchbruch beim isothermen Stoffaustauscher. 

~~ECTA4~OHAPHb~~ TEHJIO-M h~ACCO~~M~H B A~~~~~~~~~~~~H~M 
PEI’EHEPATOPE. 

MATPMYHIJE HPEflcTAnJIEHMH @YHICl[kifi TPMHA 

AEHoTa~~~-~pe~~araeTc~ ~aTeMaT~~YecKan MoAenb AJIFI 0n~caH~~ Hec~a~~oKapHoro 

Ten~o-~Maccoo6illeHa~n0p~c~0i%cpe~ecTeYet*~eM ~npu~~ema~e~ Kafiane.3~0~@sfs~YecKal 

npo~eccX3p3KTepeH~~~MaCC006MeHHEiKOBp~reHep3TLlBHOrOTLIna,BIFOTOpbIXp3~TBOpeHHOe 

BeqeCTBO a6cop6HpyeTcn I43 >KKaAKO8 @a3bI Ha BHyTpeHHlOlO IlOBepXHOCTb IIOpHCTOrO 

M aTepaax?a . 
~HTerpa~bHaK ~op~y~~pon~a pemen~~ MaTe~aT~qec~o~ XoReejnl RaeTcrt 13 ~~HK~~~x 

rpazfa. nocne ~oro, HaK 0npeAejIeHn ~PYHK~MEI rpaHa,nerKo nonysaeTcR peiueale 3aAaYM 

AJIX ~1m6,x npOH3BOJILHbIX BXOJJHLIX, HaYWlbHLIX I4 rp3HLlYHbIX yCJlOB&@% IlyTeM OqeHKYr 

EiHTerpanoB,BKnIoYaro~Elx~y~KqMMrpHHaMllasecTHbIe~~JI~~HR.PellIeHReMaTeMaTaYecKol 

3aRaYn A~IR csysaFt sn,qeneHaR TenjIa B nopr?cToM MaTepaane MomeT 6biTb TaRme Henoc- 

pe~cTBeHH0 3an~ca~o B stli[e ~HTerpa~a, B~~~Ya~~~erO ~yHK~~~ rpHHa II M3BeCTHMe 

~yiiKq~~,OnKCb~Ba~O~ife BbIHeJieHKe TenJIa II MaCCbI. 

AJIH YaCTHOrO CJIyYaH npeHe6pexFHMO MaJIOrO COnpOTHBJIeHHfi TennO-II MWCOO6MeHy 

MemAy TeKyYeR cpasoti B KaHane II HapywwoP noBepxaocTbw nopw2Toi cpep;n I?#~HK~Iw 

rpHHa 0npefiezeHbI B aannacoBot o6aacTH IrepeMeHHot no BpeMeHIl. npll EICEOdIb30BaHWII 

3TElX ~y~K~~~ rpHHa nO~yYeH~ TOPHue peI.UeHHH JWSr IIOCTO~HH~X HaYa~bH~X yC~OB~~ H 

CTyneHYaTOrO I43MeHeHHA Ha BXOAe. 3TH penteKHsi lI03BOJiRIOT paccYaTaTL npo@n5i 

TeMnepaTypbIn KoKvefrTpa4siIfBcaMoM nopIfcToM MaTepurane.TaKI4epemeHIlrraaanornYHbIx 

3aAaY ~0 CBX nop Ke 6b1nn 0nyBnHKoBann n nmTepaType. 3~14 peUN?HIWI nonysesn B sane 

HeCO6CTBeHHbIX SfHTel'paJIOB, KOTOpbIe yA06tiee BCerO paCCY&iTaTb Ha l@lpOBOfi BLIYHCJIR- 

Te~bHO~ ~3~~He. YCTaHOB~eHO, VT0 KpMBbIB a6cop6~~oHHoro &&iKJIa AJIR a~~a6aT~YecKoro 

MaCC006M3HHIIKa MMOIOT ABe KpiPMTESYeCKIIX TO'IHB B npOT~BOnO~O~HOCTb W30TepMEYeCKOM~ 

MaCCOO6MeHHIiKy,X3p3KTep~3yIOll@?MyCR ORHO@ KpHTnYeCKOt TOYKOti. 


